

4 March 2024

High-grade Mineral Sands Intersected at Pyramid Hill

- Results received for a reconnaissance drilling program for mineral sands at Pyramid Hill with highlights from the Farrelly Prospect including:
 - PHAC1803 17m @ 9.8% THM from 12m; including
 - 11m @ 14.4% THM from 16m; that also includes
 - 1m @ 21.6% THM from 16m; and
 - 7m @ 16.8% THM from 19m
 - PHAC1804 18m @ 5.5% THM from 13m; including
 - 7m @ 10.7%% THM from 20m; that also includes
 - 4m @ 12.0% THM from 22m
 - PHAC1790 6m @ 4.8% THM from 8m; including
 - 1m @ 9.6% THM from 8m
 - PHAC1789 7m @ 2.1% THM from 10m
 - PHAC1788 4m @ 2.9% THM from 11m
 - The high-grade Farrelly Prospect is open in all directions, with follow up aircore drilling planned to determine the orientation and scale of the prospect
 - Visual mineralogical assessment has identified encouraging levels of potentially valuable heavy minerals including zircon, rutile and ilmenite
 - Monazite was also observed, which is known to contain Rare Earth Elements (REE), considered critical metals for clean energy technologies, with further test work required to quantify grade and REE content
 - Additional metallurgical work is required to determine the quality of the Valuable Heavy Minerals (VHM) which is important in understanding the significance of the identified mineralisation
 - Several other areas of mineral sands mineralisation were intersected that require further assessment
 - Gold exploration continues at Pyramid Hill with aircore drilling ongoing, including infilling areas of previously announced anomalous results, as well as the reconnaissance screening program to identify new prospects

Falcon Metals Limited (ASX: FAL) ("Falcon" or "the Company") advises that it has received results for select samples from a 77-hole aircore program at its Pyramid Hill Project in Victoria (see Figure 1), focused on assessing two permits for mineral sands and associated REE. Although the permits drilled were initially explored for gold, Falcon recognised the potential for mineral sands mineralisation after completing a review of historical work on areas where the Murray Basin cover is considered prospective for mineral sands. The review of previous work carried out in the 1970s and 1980s identified specific targets that were selected for testing in this program. Although widespread mineral sands mineralisation was noted by these previous explorers, the depth of testing and the sporadic nature of sampling and subsequent analysis means this data is not of sufficient quality to be used. It

was also noted that this work did not adequately test for the presence of higher-grade strandline-type deposits. Falcon's targeting was specifically focused on finding these higher-grade zones within the areas selected.

Several holes at the newly named Farrelly Prospect returned high-grade results, with detailed grain counting and sachet scanning recording encouraging levels of valuable heavy minerals, including elevated zircon and rutile. Although monazite is present, further work is also needed to accurately quantify the amount of this mineral and the associated REE mineralisation. Falcon is planning a second phase of work on this prospect involving follow-up drilling, metallurgical test work and detailed mineralogical assessment.

Anomalous minerals sands were also intersected at the Marmal Prospect in line with historical results. Several drill holes in the northwest of EL007120 confirmed the presence of mineral sands in areas that had not been previously explored. Falcon will await further mineralogical assessment to determine if additional work is warranted on these lower priority areas.

Falcon Metals' Managing Director Tim Markwell said:

"The intersection of these high-grade zones of mineral sands in the Murray Basin is a positive development for Falcon, and this initial short program of drilling is in addition to the gold exploration program that is ongoing. Our focus will undoubtedly remain on gold, to vector in on potential high-grade discoveries in one of the world's great gold provinces.

It is easy to forget we are also in a mineral sands province where several companies are in the process of developing large projects. Falcon will take the initiative to further assess the mineral sands potential off the back of these results and look for ways to create additional value for shareholders."

Figure 1 Location map of the mineral sands drilling at Pyramid Hill

Reconnaissance Aircore Program

A review of the Falcon land position in Victoria for critical minerals identified several areas with known mineral sands and related REE potential in the Murry Basin cover in EL006864 and EL007120. Victoria is a known mineral sands province with several large projects currently in development phase. In the Victorian Murray Basin, there are at least five known mineral sands deposits with published JORC Resources. These are noted below in Table 1, with three of the nearby deposits shown in Figure 1.

In October 2023 Falcon completed 77 reconnaissance aircore holes for 3,461m across EL006864 and EL007120 on the most prospective areas of these permits. Select samples were sent to Diamantina Laboratories in Western Australia for Heavy Media Separation (HMS) test work to determine the Total Heavy Mineral (THM) content of the samples. Given anomalous results were returned, a second phase of work was conducted to determine the mineral suite to check on the Valuable Heavy Mineral (VHM) content which is critical in determining the significance of the results. This was a two-step process with detailed grain counting completed on a small subset of the results (ten samples), and the results used to complete a faster sachet scanning process to provide a high-level gauge on the broader mineral sands suite. All samples that returned >1 THM% were sent for sachet scanning. This level of work is considered prospective. On the plan maps showing the mineral sands results, <3 VHM% x metres is considered to have low potential.

Company - Deposit	Mt	THM%	Zircon	Rutile	Leucoxene	Ilmenite	Monazite	Xenotime	VHM% ⁶	In Situ VHM% ⁷
ACDC Metals ^{1 -} Goschen Central	628	1.9%	24%	9%	12%	23%	4%	0.5%	73%	1.4%
Astron – Donald ²	2,634	4.6%	18%	8%	18%	31%	2%	-	77%	3.5%
Iluka – WIM ³	1,380	5.0%	16%	5%	6%	33%	2%	0.4%	62%	3.1%
VHM Ltd – Goschen ⁴	837	3.0%	21%	11%	12%	18%	3%	0.7%	67%	2.0%
Wim Resources - Wedderburn ⁵	223	2.9%	21%	14%	17%	33%	2%	-	87%	2.5%

Table 1 Mineral Sands Deposits with Published JORC Resources

¹ "ACDC Metals RIU Conference Presentation" released to ASX 14 February 2024

² "Astron 2023 Annual Report" released to ASX on 29 September 2023

³ "Iluka Revised Announcement - Wimmera Development Progress" released to ASX 22 February 2024

⁴ "VHM 1H FY24 Results Presentation" released to ASX 28 February 2024

⁵ https://wimresource.com.au/project/wedderburn-hms/

⁶VHM% is calculated by adding Zircon, Rutile, Leucoxene and Ilmenite (Note: This preliminary scanning does not include Monazite or Xenotime)

⁷ In Situ VHM% is calculated by THM% multiplied by VHM%

Farrelly Prospect

Several high-grade results were returned from the Farrelly Prospect (see Figures 2 and 3) with holes PHAC1803 and PHAC1804 returning the best results from the program. These holes were drilled on an east-west roadside, 200m apart, and were the only holes drilled in this area by Falcon.

17m @ 9.8% THM from 12m; including
 11m @ 14.4% THM from 16m; that also includes
 1m @ 21.6% THM from 16m; and
• 7m @ 16.8% THM from 19m
18m @ 5.5% THM from 13m; including
 7m @ 10.7%% THM from 20m; that also includes
• 4m @ 12.0% THM from 22m

Over 5km north-northeast of these results, Falcon drilled a further three holes 200m apart which also returned anomalous results.

- **PHAC1790** 6m @ 4.8% THM from 8m; including
 - 1m @ 9.6% THM from 8m
- PHAC1789 7m @ 2.1%% THM from 10m
- PHAC1788 4m @ 2.9% THM from 11m

Although it is too early to determine if both lines of drilling are part of the same mineralised zone, it provides a compelling target for exploration given the shallow high-grade mineralisation. Falcon is well advanced with planning for infill and extensional drilling to investigate the extent and geometry of the high-grade mineralisation at the Farrelly Prospect. It is expected that this drilling will commence in the coming week.

Figure 2 Location of Farrelly Prospect

The sachet scanning of samples from the Farrelly Prospect confirmed that a suite of VHM is present in the high-grade areas. Some of the insitu VHM% grades are encouraging, particularly PHAC1803 with 17m @ 9.8% VHM from 12m (see Table 2). Given the high-grade of the Farrelly Prospect, the heavy mineral content is potentially significant with zircon ranging from 14% to 25%, rutile 5% to 13% and ilmenite 20% to 36%.

Grain counting was completed for five one-metre intervals from the Farrelly Prospect (Appendix 3) and this confirmed the presence of monazite (a REE bearing mineral, of which REE's are considered critical metals for clean energy technologies), with values varying from 0.5% to 2.5% (See Table 3). It was noted by the mineralogist that accurately quantifying monazite is better suited to other techniques and additional mineralogical test work will provide more confidence in the abundance of monazite and the presence of xenotime throughout the mineral sands in Falcon's tenements.

Figure 3 Cross-sections A-B and C-D through the Farrelly Prospect

C

Hole ID	From	То	Interval	THM%	Zircon	Rutile	Leucoxene	Ilmenite	VHM%1	In Situ VHM% ²
PHAC1788	11	15	4	2.9%	29%	10%	5%	31%	75%	2.2%
PHAC1789	10	17	7	2.1%	22%	13%	11%	36%	82%	1.7%
PHAC1790	8	14	6	4.8%	17%	5%	5%	18%	45%	2.2%
PHAC1803	12	29	17	9.8%	17%	7%	5%	26%	55%	5.4%
incl.	16	27	11	14.4%	20%	7%	5%	27%	59%	8.5%
that also incl.	16	17	1	21.6%	25%	10%	5%	20%	60%	13.0%
and	19	26	7	16.8%	20%	6%	5%	29%	60%	10.1%
PHAC1804	13	31	18	5.5%	14%	9%	5%	22%	50%	2.8%
incl.	20	27	7	10.7%	15%	11%	5%	24%	55%	5.9%
that also incl.	22	26	4	12.0%	15%	10%	5%	24%	54%	6.5%

Table 2 Mineral suite results from sachet scanning from the Farrelly Prospect (VHM>1%)

¹VHM% is calculated by adding Zircon, Rutile, Leucoxene and Ilmenite (Note: This preliminary scanning does not include Monazite or Xenotime)

 2 In Situ VHM% is calculated by THM% multiplied by VHM%

The THM analysis was done on the 38 μ m to 1mm size fraction as is standard practice in reporting mineral sands results. Further studies to test for the THM and VHM abundance of the 20 μ m to 38 μ m fine fraction will be investigated.

Table 3 Grain counting results for select samples from the Farrelly Prospect showing preliminary monazite grades

Hole ID	From	То	Width	THM%	Monazite%	Total VHM%
PHAC1788	12	13	1	3.7	1.0	81
PHAC1789	11	12	1	4.6	2.5	93
PHAC1790	13	14	1	2.4	0.5	55
PHAC1803	20	21	1	9.7	1.0	65
PHAC1804	20	21	1	17.0	0.5	54

Marmal Prospect

The Marmal Prospect was identified by Aberfoyle Resources in the late 1980's and infill drilling was completed but the available data was not of appropriate detail to develop an exploration target. Drilling completed by Falcon confirmed the presence of a low-grade but generally shallow prospect with a high percentage of VHM. There is some scope to increase the scale of the prospect to the south where more consistent zones of mineralisation were encountered in consecutive holes (see Figure 4), however, this target is a lower priority than the Farrelly Prospect.

Regional Results

An area in the northwest of EL007120 was targeted for drilling because it had never been explored but appeared to be the possible southern extension of a strandline that is held by Iluka Resources (ASX: ILU) under a retention licence. Although these results were not as encouraging as the Farrelly Prospect, they did highlight that some mineral sands potential does exist within the western part of EL007120 (See Figure 5).

Figure 5 Plan map of the drilling in the northwest of EL007120

Next Steps

Drilling is expected to recommence at the Farrelly Prospect by the end of the week. This program will involve the collection of sufficient material to allow for more advanced metallurgical test work to be undertaken.

It is anticipated that this program will take approximately one week to complete and then the rig will return to the gold exploration program.

Results from the other zones of anomalous mineralisation will be reviewed and further test work undertaken to determine which areas are sufficiently prospective to warrant follow up drilling.

This announcement has been approved for release by the Board of Falcon Metals.

For more information, please contact:

Tim Markwell Managing Director tmarkwell@falconmetals.com.au Ben Creagh Media and Investor Queries benc@nwrcommunications.com.au

COMPETENT PERSON STATEMENT:

The information contained within this announcement relates to exploration results based on and fairly represents information compiled and reviewed by Mr Greg Jones, a Competent Person who is a Fellow of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Jones is an employee of IHC Mining and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Jones consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

FORWARD LOOKING STATEMENT:

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (Forward Statements). Forward Statements can generally be identified by the use of forward looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also forward looking statements. Forward looking statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

APPENDIX 1: Details for aircore drill holes with results available in this announcement

Ducautat		Easting	Northing	RL	7	Cuid	Azimuth	Dip	Depth
Prospect		(m)	(m)	(m)	Zone	Grid	UTM (°)	(°)	(m)
Marmal	PHAC1774	727816.4	5991734	114	54	GDA94	0	-90	36
Marmal	PHAC1775	727753.2	5991342	117	54	GDA94	0	-90	54
Marmal	PHAC1776	727689.1	5990944	120	54	GDA94	0	-90	57
Douglas Rd	PHAC1777	722296.5	5990709	118	54	GDA94	0	-90	61
Douglas Rd	PHAC1778	722223.8	5990710	118	54	GDA94	0	-90	42
Douglas Rd	PHAC1779	722413.2	5990705	118	54	GDA94	0	-90	39
Marmal	PHAC1780	730124.7	5993431	109	54	GDA94	0	-90	111
Marmal	PHAC1781	730518.9	5993371	107	54	GDA94	0	-90	73
Marmal	PHAC1782	728788.3	5995360	105	54	GDA94	0	-90	45
Marmal	PHAC1783	728981.5	5995366	105	54	GDA94	0	-90	83
Marmal	PHAC1784	729206.9	5995352	104	54	GDA94	0	-90	39
Marmal	PHAC1785	729438.2	5995312	104	54	GDA94	0	-90	79
Marmal	PHAC1786	729597.2	5995280	104	54	GDA94	0	-90	33
Marmal	PHAC1787	729844.7	5995245	106	54	GDA94	0	-90	113
Farrelly	PHAC1788	744754.3	5991870	94	54	GDA94	0	-90	52
Farrelly	PHAC1789	744924	5991841	94	54	GDA94	0	-90	45
Farrelly	PHAC1790	745097	5991808	94	54	GDA94	0	-90	45
Farrelly	PHAC1791	737457	5984703	131	54	GDA94	0	-90	45
Farrelly	PHAC1792	737635.8	5984670	131	54	GDA94	0	-90	45
Farrelly	PHAC1793	737847.3	5984637	130	54	GDA94	0	-90	48
Farrelly	PHAC1794	738032.9	5984605	129	54	GDA94	0	-90	45
Farrelly	PHAC1795	738240.7	5984573	128	54	GDA94	0	-90	48
Farrelly	PHAC1796	738454.7	5984551	127	54	GDA94	0	-90	66
Farrelly	PHAC1797	738360	5984828	127	54	GDA94	0	-90	45
Farrelly	PHAC1798	738258.2	5985127	127	54	GDA94	0	-90	45
Farrelly	PHAC1799	738442.3	5985015	126	54	GDA94	0	-90	42
Farrelly	PHAC1800	738640.6	5984958	125	54	GDA94	0	-90	39
Farrelly	PHAC1801	738830.7	5984951	124	54	GDA94	0	-90	39
Farrelly	PHAC1802	739035	5984896	123	54	GDA94	0	-90	45
Farrelly	PHAC1803	742496.7	5986534	107	54	GDA94	0	-90	42
Farrelly	PHAC1804	742296.8	5986580	108	54	GDA94	0	-90	39
Ryans Rd	PHAC1805	689641.5	6005447	104	54	GDA94	0	-90	57
Barbers Rd	PHAC1806	683550.4	6004696	104	54	GDA94	0	-90	49
Barbers Rd	PHAC1807	683195.6	6004746	104	54	GDA94	0	-90	39
Barbers Rd	PHAC1808	682793	6004809	104	54	GDA94	0	-90	36
Barbers Rd	PHAC1809	682401.1	6004856	104	54	GDA94	0	-90	33
Barbers Rd	PHAC1810	682005.1	6004914	104	54	GDA94	0	-90	33

Ducaucat		Easting Northing RL		Cuid	Azimuth	Dip	Depth		
Prospect	Hole ID	(m)	(m)	(m)	Zone	Grid	UTM (°)	(°)	(m)
Barbers Rd	PHAC1811	681611.7	6004970	105	54	GDA94	0	-90	33
Barbers Rd	PHAC1812	681310.9	6005129	105	54	GDA94	0	-90	36
Barbers Rd	PHAC1813	680940.7	6005317	104	54	GDA94	0	-90	33
Barbers Rd	PHAC1814	680582.5	6005498	104	54	GDA94	0	-90	36
Barbers Rd	PHAC1815	680225.4	6005677	104	54	GDA94	0	-90	36

APPENDIX 2: Pyramid Hill significant aircore drill intersections (>1% VHM)

Target	HoleID	From (m)	To (m)	Interval (m)	тнм	>1mm	<38um	Zircon	Rutile	Leucoxene	Ilmenite	νнм	In Situ VHM
Farrelly	PHAC1804	13.0	31.0	18	5.5%	12%	43%	14%	9%	5%	22%	50%	2.7%
Farrelly	incl.	20.0	27.0	7	10.7%	19%	35%	15%	11%	5%	24%	55%	5.9%
Farrelly	that also incl.	22.0	26.0	4	12.0%	23%	35%	15%	10%	5%	24%	54%	6.5%
Ryans Rd	PHAC1805	30.0	36.0	6	4.5%	7%	35%	9%	5%	8%	15%	37%	1.7%
Ryans Rd	incl.	33.0	36.0	3	7.1%	12%	37%	8%	5%	5%	13%	32%	2.3%
Barbers Rd	PHAC1812	19.0	20.0	1	1.3%	1%	26%	10%	10%	35%	25%	80%	1.0%
Barbers Rd	and	24.0	28.0	4	1.5%	1%	23%	15%	15%	15%	29%	74%	1.1%
Barbers Rd	PHAC1813	18.0	21.0	3	1.6%	2%	24%	32%	12%	13%	23%	80%	1.3%
Barbers Rd	and	25.0	26.0	1	1.6%	1%	26%	35%	10%	10%	25%	80%	1.3%

Hole ID	PHAC1788	PHAC1789	PHAC1790	PHAC1804	PHAC1803
Depth	12-13m	11-12m	13-14m	20-21m	20-21m
THM%	3.69%	4.61%	2.40%	9.66%	16.95%
Sample Number	MS00725	MS00744	MS00760	MS00883	MS00919
Ilmenite Product %	36	49	26	33	32
Ilmenite	1	0	0	2	3
Alt. Ilmenite	7	1	1	19	19
Pseudo Rutile	28	48	25	12	10
Leucoxene Product %	5	8	7	2	2
Leucoxene	5	8	7	2	2
Rutile Product %	11	15	7	3	5
Anatase	8	10	4	2	3
Rutile	3	5	2	2	2
Zircon Product %	29	19	16	25	16
Zircon	29	19	16	25	16
Monazite%	1	3	1	1	1
Total VHM%	81	93	56	65	54

APPENDIX 3: Farrelly Prospect grain counting results

APPENDIX 4: JORC Table 1 – Pyramid Hill – Mineral Sands

Section 1 Sampling Techniques and Data

Criteria JC	ORC Code explanation	Commentary
Sampling techniques •	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	 The aircore samples were collected every metre. A rotary splitter attached to the cyclone was used to collect a representative sample of each interval drilled into a calico bag with the remainder of the sample collected in a bucket and laid out on a tarp in sequential order. A handful of sample from each interval was panned to estimate THM% and SLIMES% by the rig geologist. Based on the results of the panning sample intervals were selected.
Drilling techniques •	Drill type (eg. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The Aircore drilling was completed by Bostech Drilling Australia using face sampling blade bits with a diameter of 85mm NQ diameter drill rods were used All holes drilled vertically Aircore is considered a standard industry technique for heavy mineral sand exploration.
Drill sample recovery •	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	 Aircore samples were recorded as wet or dry, and samples with low recovery were recorded. Geologists were checking for any signs of downhole contamination, and this was noted.
Logging •	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The aircore chips were logged and sampled at the rig with the entire hole being logged. The samples were qualitatively logged via digital entry into a Microsoft Excel spreadsheet. The logging consisted of lithology, colour, grainsize, sorting, hardness, sample condition, washability, estimated THM% and SLIMES%. A mineral sands consultant was present at the commencement of the project to ensure that the rig geologists were trained in the logging of mineral sands.

0		
	JORC code explanation	Commentary
Sub-sampling techniques and sample preparation Quality of assay dat and laboratory tests	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 Field duplicates were collected every 40th sample for the mineral sands aircore drilling. For the aircore drilling 1m samples were routinely collected of all the zones with mineral sands identified from panning. Field duplicates were collected every 40th sample for the mineral sands aircore drilling. Field duplicates were collected every 40th sample for the mineral sands aircore drilling.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established. 	 Field standards were collected every 40th sample for the mineral sands drilling. Samples were submitted to Diamantina Samples were transported to Diamantina laboratory for assaying. Diamantina is considered to be a mineral sands industry leading laboratory. Samples were weighed by Diamantina laboratory on arrival. The laboratory sample was dried for up to 24 hours @ 105 - 110 degrees Celsius. The sample was loosened until friable and passed through a rotary splitter to take 250 g sub-sample. This sub-sample is then wet screened on a Sweco vibrating screen deck at a top aperture of 1 mm (oversize 'OS') and a bottom screen of 38 μm (SLIMES fraction). The sand fraction containing the THM (-1 mm and +38 μm) is then dried and a sub-split of approximately 100 g is taken using a micro riffle splitter and used for heavy liquid separation using funnels and a heavy liquid, Tetrabromoethane (TBE), with a density of between 2.92 and 2.96 gcm-3 to determine total heavy mineral (THM) content. This is considered to be an industry standard technique. Field duplicates and the HM standards are inserted into the sample string at a frequency rate of 1 per 40 primary samples. Diamantina also completed their own internal QA/QC checks by inserting laboratory repeats at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Significant intersections are checked by the Exploration Manager. Significant intersections are cross-checked with the geology logged after assays are received. No twin holes have been drilled for comparative purposes. The targets are still considered to be in an early exploration stage. Primary data was digitally collected and entered via a field

Criteria	JORC Code explanation	Commentary
	• Discuss any adjustment to assay data.	 Toughbook computer using in house logging codes. The data is sent to the database manager where the data is validated and loaded into the master database. No adjustments have been made to the assay data received.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control 	 Hole collar locations have been picked up by Falcon employees using a handheld GPS with a +/- 3m error. The grid system used for the location of the drill holes is MGA_GDA94 (Zone 54 or Zone 55). RL data have been assigned from 10m DEM satellite data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Spacing of the aircore drilling varies. The drilling was designed to test anomalous results from historical mineral sands drilling. The current spacing is not considered sufficient to assume any geological or grade continuity of the results intersected. No sample compositing has been applied.
Orientation of data i relation to geologica structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was all vertical and is not considered to introduce any sampling bias. Drilling was conducted along existing roads.
Sample security	• The measures taken to ensure sample security.	• Samples are stored on site and were shipped to Diamantina by a freight agent.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No review has been carried out to date.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary				
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drilling was carried out within EL006864 and EL007120. These licences are wholly owned by Falcon Gold Resources Pty Ltd, a wholly owned subsidiary of Falcon Metals Limited with no known encumbrances. 				
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Mineral Sands exploration over the areas investigated by Falcon was completed by several companies: Reef Oil in 1973 defined the Gredgwin Prospect in the area to the south of Woolshed swamp in EL006864 to the north west of Farrelly Prospect Aberfoyle Resources Limited identified mineral sands in an area to the southwest of Terrappee Swamp in the late 1980's centred on Wrights Rd. CRA drilled the area around the Farrelly Prospect on a coarse spacing targeting a very large WIM style deposit and results were not considered worthy of follow up. 				
Geology	• Deposit type, geological setting and style of mineralisation.	The mineralisation being explored for is either strand deposits or WIM style within the globally significant Murray Basin Perilla and Loxton sands.				
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer Appendices All mineralisation >1%VHM is reported in the Appendices. 				
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 A length-weighted averaging technique has been applied where necessary to produce all displayed and tabulated drill intersections. In Appendix tables and figures, results are calculated using either a minimum 1%THM with higher grade zones defined by a minimum 5% and 10% and max 2m internal dilution. 				

Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	The relationship between mineral sands vertical drilling and true width is considered to be close because these deposits are generally horizontal in nature. Downhole lengths are reported.
Diagrams	 Appropriate maps and sections (with scales) Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The results of the AC drilling are displayed in the figures in the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Only results above 1% VHM have been tabulated in this announcement. The results are considered representative with no intended bias.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey • results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Preliminary grain counting has been carried out on selected samples deemed to be representative of the varying mineral assemblages and THM grain sizes. Grain counting by a 300-point modal analysis was carried out by Diamantina Laboratories to characterise the mineral assemblage on 10 representative samples. This modal analysis is then used to guide sachet scanning of the THM sinks fraction. These estimates of mineralogy are then used to estimate the percentage of VHM in each of the selected samples. Ultimately this sachet scanning will be used to guide the geological interpretation and selection of samples for more quantitative mineralogical determination.
Further work	 The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional AC drilling is in process to define the anomalous results identified in this drilling program. Mineralogical analysis is ongoing.